Game Physics

Game and Media Technology Master Program - Utrecht University

Dr. Nicolas Pronost

Numerical Integration

Updating position

- Recall that $F O R C E=M A S S \times$ ACCELERATION
- If we assume that the mass is constant then

$$
F\left(p_{o}, t\right)=m * a\left(p_{o}, t\right)
$$

- We know that $v^{\prime}(t)=a(t)$ and $p_{o}{ }^{\prime}(t)=v(t)$
- So we have $F\left(p_{o}, t\right)=m * p_{o}{ }^{\prime \prime}(t)$
- This is a differential equation
- Well studied branch of mathematics
- Often difficult to solve in real-time applications

Taylor series

- Taylor expansion series of a function can be applied on p_{0} at $\mathrm{t}+\Delta t$

$$
\begin{aligned}
p_{o}(t & +\Delta t) \\
& =p_{o}(t)+\Delta \mathrm{t} * p_{o}^{\prime}(t)+\frac{\Delta t^{2}}{2} p_{o}^{\prime \prime}(t)+\cdots \\
& +\frac{\Delta t^{n}}{n!} p_{o}^{(n)}(t)
\end{aligned}
$$

- But of course we don't know the values of the entire infinite series, at best we have $p_{o}(t)$ and the first two derivatives

First order approximation

- Hopefully, if Δt is small enough, we can use an approximation

$$
p_{o}(t+\Delta t) \approx p_{o}(t)+\Delta t * p_{o}^{\prime}(t)
$$

- Separating out position and velocity gives

$$
\begin{gathered}
v(t+\Delta t)=v(t)+a(t) \Delta t=v(t)+\frac{F(t)}{m} \Delta t \\
p_{o}(t+\Delta t)=p_{o}(t)+v(t) \Delta t
\end{gathered}
$$

Euler's method

- This is known as Euler's method $v(t+\Delta t)=v(t)+a(t) \Delta t$ $p_{o}(t+\Delta t)=p_{o}(t)+v(t) \Delta t$

Euler's method

- So by assuming the velocity is constant for the time Δt elapsed between two frames
- We compute the acceleration of the object from the net force applied on it

$$
a(t)=F(t) / m
$$

- We compute the velocity from the acceleration

$$
v(t+\Delta t)=v(t)+a(t) \Delta t
$$

- We compute the position from the velocity

$$
p_{o}(t+\Delta t)=p_{o}(t)+v(t) \Delta t
$$

Issues with linear dynamics

- We only look at a sequence of instants without meaning
- E.g. little chance that we see the precise instant of bouncing

- Trajectories are treated as piecewise lines
- we assume constant velocity and acceleration in-between frames

Time step

- The smaller Δt, the closer to $p_{o}(s)=\int_{0}^{s} v(t) d t$ the approximation, and so the more we can ignore these issues
- So the classic solution is to reduce Δt as much as possible

- Usually frame rate of the game loop is enough
 - But sometimes more steps are needed (especially if frame rate drops)

- we perform more than one integration step per frame
- each step is called an iteration
- if h is the length of the frame and n the number of iterations, then $\Delta t=h / n$ for each iteration of a step

Time step

- However, our assumption is that the slope at a current point is a good estimate for the slope over the entire time interval Δt
- If not, the approximation can drift off the function, and the farther it drifts the worse the tangent approximation can get

Error accumulation

- Accuracy is increased by taking the smallest step as possible, however more rounding errors occur and it is computationally expensive

Midpoint method

- In the midpoint method we calculate the tangent in the middle of the interval
- using Euler's method on half of the desired time step
- And apply it to our point across the entire interval

Midpoint method

- The position of the point is given by

$$
p_{o}(t+\Delta t)=p_{o}(t)+\Delta t * v\left(t+\frac{\Delta t}{2}, p_{o}+\frac{\Delta t}{2} v\left(t, p_{o}\right)\right)
$$

- The order of the error is dependent on the square of the time step $O\left(\Delta t^{2}\right)$ which is better than Euler's method $(O(\Delta t))$ when $\Delta t<1$
- Approximate the function with a quadratic curve instead of a line
- But still can drift off the function

Improved Euler's method

- The improved Euler's method considers the tangent lines to the solution curve at both ends of the interval
- It takes the average of two points, one overestimating the ideal velocity and one underestimating it
- defined by the up/down concavity of the curve (not known in advance)
- reduces Euler's method error as 'move back' the point towards the curve
- The order of the error is again $O\left(\Delta t^{2}\right)$ as the measure of the final derivative is still inaccurate

Improved Euler's method

- Velocity to the first point (Euler's prediction)

$$
v_{1}=v(t)+\Delta t * a(t, v)
$$

- Velocity to the second point (correction point)

$$
v_{2}=v(t)+\Delta t * a\left(t+\Delta t, v_{1}\right)
$$

- Improved Euler's velocity

$$
v(t+\Delta t)=\frac{v_{1}+v_{2}}{2}
$$

Improved Euler's method

Runge-Kutta method

- Hopefully there exist methods that give better results than a quadratic error
- The Runge-Kutta order four method (RK4) is for example $O\left(\Delta t^{4}\right)$
- It can be seen as a combination of the midpoint and modified Euler's methods where we give higher weights to the midpoint tangents than to the endpoints tangents

RK4

- We calculate the four following tangents

$$
\begin{gathered}
v_{1}=\Delta t * a(t, v(t)) \\
v_{2}=\Delta t * a\left(t+\frac{\Delta t}{2}, v(t)+\frac{1}{2} v_{1}\right) \\
v_{3}=\Delta t * a\left(t+\frac{\Delta t}{2}, v(t)+\frac{1}{2} v_{2}\right) \\
v_{4}=\Delta t * a\left(t+\Delta t, v(t)+v_{3}\right)
\end{gathered}
$$

- And weight them as follows

$$
v(t+\Delta t)=v(t)+\frac{v_{1}+2 v_{2}+2 v_{3}+v_{4}}{6}
$$

RK4

5.2

$$
\begin{aligned}
& v_{1}=\Delta t * a(t, v(t)) \\
& v_{2}=\Delta t * a\left(t+\frac{\Delta t}{2}, v(t)+\frac{1}{2} v_{1}\right) \\
& v_{3}=\Delta t * a\left(t+\frac{\Delta t}{2}, v(t)+\frac{1}{2} v_{2}\right) \\
& v_{4}=\Delta t * a\left(t+\Delta t, v(t)+v_{3}\right)
\end{aligned}
$$

Verlet integration

- The Verlet integration method is based on the sum of the Taylor expansion series of the previous time step and the next one

$$
\begin{aligned}
p_{o}(t+ & \Delta t)+p_{o}(t-\Delta t) \\
= & p_{o}(t)+\Delta t * p_{o}^{\prime}(t)+\frac{\Delta t^{2}}{2} * p_{o}^{\prime \prime}(t)+\cdots \\
& +p_{o}(t)-\Delta t * p_{o}^{\prime}(t)+\frac{\Delta t^{2}}{2} * p_{o}^{\prime \prime}(t)-\cdots
\end{aligned}
$$

Verlet integration

- Solving for the current position gives us

$$
p_{o}(t+\Delta t)=2 p_{o}(t)-p_{o}(t-\Delta t)+\Delta t^{2} p_{o}{ }^{\prime \prime}(t)+\cdots
$$

- If the higher terms in $O\left(\Delta t^{4}\right)$ are neglected again we get

$$
p_{o}(t+\Delta t)=2 p_{o}(t)-p_{o}(t-\Delta t)+\Delta t^{2} p_{o}{ }^{\prime \prime}(t)
$$

- Note that we do not explicitly use velocities

Verlet integration

Verlet integration

- It gives an order of error in $O\left(\Delta t^{2}\right)$
- Very stable and fast as does not need to estimate velocities
- But we need an estimation of the first $p_{o}(t-\Delta t)$
- Usually obtained from one step of Euler's or RK4 method
- And more difficult to manage velocity related forces such as drag or collision

Implicit methods

- Every method so far used the current position $p_{o}(t)$ and velocity $v(t)$ to calculate the next position and velocity
- this is referred to as explicit methods
- In implicit methods, we make use of the quantities from the next time step!

$$
p_{o}(t+\Delta t)=p_{o}(t)+\Delta t * v(t+\Delta t)
$$

- this particular one is called backward Euler
- the goal is to find the position $p_{o}(t+\Delta t)$ for which we would end up at p_{o} by running the simulation backwards

Implicit methods

- Implicit methods do not guarantee more accuracy than explicit methods
- But at least they do not add energy to the system, they lose some
- Since we usually want a damping of the position anyway (e.g. to simulate drag force or kinetic friction), it's a lesser evil

Backward Euler

Backward Euler

- But how do we calculate the velocity at a position we don't know yet?
- If we know the forces applied we can calculate it directly
- For example if a drag force $F_{D}=-b * v$ is applied

$$
v(t+\Delta t)=v(t)-\Delta t * b * v(t+\Delta t)
$$

- And therefore

$$
v(t+\Delta t)=\frac{v(t)}{1+\Delta t * b}
$$

Backward Euler

- If we don't know the forces in advance (that happens continuously in a game) or if solving the previous equation is not possible, we use a predictor-corrector method
- one step of explicit Euler's method
- use the predicted position to calculate $v(t+\Delta t)$
- More accurate than explicit method but twice the amount of calculation

Semi-implicit method

- The semi-implicit method provides simplicity of explicit Euler and stability of implicit Euler
- Runs an explicit Euler step for velocity and then an implicit Euler step for position

$$
\begin{gathered}
v(t+\Delta t)=v(t)+\Delta t * a(t)=v(t)+\Delta t * F(t) / m \\
p_{o}(t+\Delta t)=p_{o}(t)+\Delta t * v(t)=p_{o}(t)+\Delta t * v(t+\Delta t)
\end{gathered}
$$

Semi-implicit method

- The position update in the second step uses the next velocity and the implicit method
- good for position-dependent forces
- and conserves energy over time, so very stable
- Usually not as accurate as RK4 because order of error is still $O(\Delta t)$ but cheaper and similar stability
- Very popular choice for game physics engine

Summary

- Many integration methods exist, each with its own properties and limitations
- First order methods
- Euler method, Backward Euler, Semi-implicit Euler, Exponential Euler

- Second order methods

- Verlet integration, Velocity Verlet, Trapezoidal rule, Beeman's algorithm, Midpoint method, Improved Euler's method, Heun's method, Newmark-beta method, Leapfrog integration
- Higher order methods
- Runge-Kutta family methods, Linear multistep method

Concluding remarks

- Dimension
- We have shown integration methods for 1D variables
- However, every dimension can be calculated separately using vector based structures
- Rotational motion
- The integration methods work exactly the same for angular displacement θ, velocity ω and acceleration α
- Evaluation of all dimensions and variables should be done for the same simulation time t

End of
 Numerical Integration

Next
Collision detection

