
Game Physics

Game and Media Technology

Master Program - Utrecht University

Dr. Nicolas Pronost

Numerical Integration

Game Physics

• Recall that 𝐹𝑂𝑅𝐶𝐸 = 𝑀𝐴𝑆𝑆 × 𝐴𝐶𝐶𝐸𝐿𝐸𝑅𝐴𝑇𝐼𝑂𝑁

– If we assume that the mass is constant then

𝐹 𝑝𝑜, 𝑡 = 𝑚 ∗ 𝑎(𝑝𝑜, 𝑡)

– We know that 𝑣′ 𝑡 = 𝑎(𝑡) and 𝑝𝑜
′ 𝑡 = 𝑣(𝑡)

– So we have 𝐹 𝑝𝑜, 𝑡 = 𝑚 ∗ 𝑝𝑜
′′(𝑡)

• This is a differential equation

– Well studied branch of mathematics

– Often difficult to solve in real-time applications

3

Updating position

Game Physics

• Taylor expansion series of a function can be
applied on 𝑝0 at t + ∆𝑡

𝑝𝑜 𝑡 + ∆𝑡

= 𝑝𝑜 𝑡 + ∆t ∗ 𝑝𝑜
′ 𝑡 +

∆𝑡2

2
𝑝𝑜

′′ 𝑡 + ⋯

+
∆𝑡𝑛

𝑛!
𝑝𝑜

𝑛 𝑡

• But of course we don’t know the values of the
entire infinite series, at best we have 𝑝𝑜 𝑡 and the
first two derivatives

4

Taylor series

Game Physics

• Hopefully, if ∆𝑡 is small enough, we can use an

approximation

𝑝𝑜 𝑡 + ∆𝑡 ≈ 𝑝𝑜 𝑡 + ∆t ∗ 𝑝𝑜

′ 𝑡

• Separating out position and velocity gives

 𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 + 𝑎 𝑡 ∆𝑡 = 𝑣 𝑡 +
𝐹(𝑡)

𝑚
∆𝑡

 𝑝𝑜(𝑡 + ∆𝑡) = 𝑝𝑜(𝑡) + 𝑣(𝑡)∆𝑡

5

First order approximation

Game Physics

• This is known as Euler’s method

 𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 + 𝑎 𝑡 ∆𝑡

 𝑝𝑜(𝑡 + ∆𝑡) = 𝑝𝑜(𝑡) + 𝑣(𝑡)∆𝑡

6

Euler’s method
5.1

𝑣(𝑡 − ∆𝑡)

𝑎(𝑡 − ∆𝑡)

𝑣(𝑡)

𝑣(𝑡)

𝑎(𝑡) 𝑣(𝑡 + ∆𝑡)

𝑡

𝑡 + ∆𝑡

Game Physics

• So by assuming the velocity is constant for the

time ∆𝑡 elapsed between two frames

– We compute the acceleration of the object from the net

force applied on it

𝑎 𝑡 = 𝐹(𝑡)/𝑚

– We compute the velocity from the acceleration

𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 + 𝑎 𝑡 ∆𝑡

– We compute the position from the velocity

𝑝𝑜 𝑡 + ∆𝑡 = 𝑝𝑜 𝑡 + 𝑣(𝑡)∆𝑡

7

Euler’s method

Game Physics

• We only look at a sequence

of instants without meaning

– E.g. little chance that we see

the precise instant of bouncing

8

Issues with linear dynamics

• Trajectories are treated

as piecewise lines

– we assume constant velocity

 and acceleration in-between frames

Game Physics

• The smaller ∆𝑡, the closer to 𝑝𝑜 𝑠 = 𝑣 𝑡 𝑑𝑡
𝑠

0
 the

approximation, and so the more we can ignore

these issues

• So the classic solution is to reduce ∆𝑡 as much as

possible

– Usually frame rate of the game loop is enough

– But sometimes more steps are needed (especially if

frame rate drops)

• we perform more than one integration step per frame

• each step is called an iteration

• if ℎ is the length of the frame and 𝑛 the number of iterations,

then ∆𝑡 = ℎ 𝑛 for each iteration of a step

9

Time step

Game Physics

• However, our assumption is that the slope at a

current point is a good estimate for the slope over

the entire time interval ∆𝑡

• If not, the approximation can drift off the function,

and the farther it drifts the worse the tangent

approximation can get

10

Time step

Game Physics

• Accuracy is increased by taking the smallest step

as possible, however more rounding errors occur

and it is computationally expensive

11

Error accumulation

𝑥0

𝑥1 𝑥2

errors

Game Physics

• In the midpoint method we calculate the tangent in

the middle of the interval

– using Euler’s method on half of the desired time step

• And apply it to our point across the entire interval

12

Midpoint method

𝑥0

𝑥1/2 𝑥′1

𝑥1

Game Physics

• The position of the point is given by

𝑝𝑜 𝑡 + ∆𝑡 = 𝑝𝑜 𝑡 + ∆𝑡 ∗ 𝑣 𝑡 +
∆𝑡

2
, 𝑝𝑜 +

∆𝑡

2
𝑣(𝑡, 𝑝𝑜)

• The order of the error is dependent on the square

of the time step 𝑂(∆𝑡2) which is better than Euler’s

method (𝑂(∆𝑡)) when ∆𝑡 < 1

• Approximate the function with a quadratic curve

instead of a line

• But still can drift off the function

13

Midpoint method

Game Physics

• The improved Euler’s method considers the
tangent lines to the solution curve at both ends of
the interval

• It takes the average of two points, one
overestimating the ideal velocity and one
underestimating it
– defined by the up/down concavity of the curve (not

known in advance)

– reduces Euler’s method error as ‘move back’ the point
towards the curve

• The order of the error is again 𝑂(∆𝑡2) as the
measure of the final derivative is still inaccurate

14

Improved Euler’s method

Game Physics

• Velocity to the first point (Euler’s prediction)

𝑣1 = 𝑣 𝑡 + ∆𝑡 ∗ 𝑎(𝑡, 𝑣)

• Velocity to the second point (correction point)

𝑣2 = 𝑣 𝑡 + ∆𝑡 ∗ 𝑎 𝑡 + ∆𝑡, 𝑣1

• Improved Euler’s velocity

𝑣 𝑡 + ∆𝑡 =
𝑣1 + 𝑣2

2

15

Improved Euler’s method

Game Physics 16

Improved Euler’s method

𝑣(𝑡)

𝑣1

𝑣2

𝑣 𝑡 + ∆𝑡 =
𝑣1 + 𝑣2

2

∆𝑡

Game Physics

• Hopefully there exist methods that give better

results than a quadratic error

• The Runge-Kutta order four method (RK4) is for

example 𝑂(∆𝑡4)

• It can be seen as a combination of the midpoint

and modified Euler’s methods where we give

higher weights to the midpoint tangents than to the

endpoints tangents

17

Runge-Kutta method

Game Physics

• We calculate the four following tangents

𝑣1 = ∆𝑡 ∗ 𝑎(𝑡, 𝑣(𝑡))

𝑣2 = ∆𝑡 ∗ 𝑎 𝑡 +
∆𝑡

2
, 𝑣 𝑡 +

1

2
𝑣1

𝑣3 = ∆𝑡 ∗ 𝑎 𝑡 +
∆𝑡

2
, 𝑣 𝑡 +

1

2
𝑣2

𝑣4 = ∆𝑡 ∗ 𝑎 𝑡 + ∆𝑡, 𝑣 𝑡 + 𝑣3

• And weight them as follows

𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 +
𝑣1 + 2𝑣2 + 2𝑣3 + 𝑣4

6

18

RK4

Game Physics 19

RK4

𝑣(𝑡)

𝑣1

𝑣 𝑡 + ∆𝑡

∆𝑡/2 ∆𝑡/2

𝑣2

𝑣3

𝑣4

𝑣1 + 2𝑣2 + 2𝑣3 + 𝑣4
6

𝑣1 = ∆𝑡 ∗ 𝑎(𝑡, 𝑣(𝑡))

𝑣2 = ∆𝑡 ∗ 𝑎 𝑡 +
∆𝑡

2
, 𝑣 𝑡 +

1

2
𝑣1

𝑣3 = ∆𝑡 ∗ 𝑎 𝑡 +
∆𝑡

2
, 𝑣 𝑡 +

1

2
𝑣2

𝑣4 = ∆𝑡 ∗ 𝑎 𝑡 + ∆𝑡, 𝑣 𝑡 + 𝑣3

5.2

Game Physics

• The Verlet integration method is based on the sum

of the Taylor expansion series of the previous time

step and the next one

𝑝𝑜 𝑡 + ∆𝑡 + 𝑝𝑜 𝑡 − ∆𝑡

= 𝑝𝑜 𝑡 + ∆𝑡 ∗ 𝑝𝑜
′ 𝑡 +

∆𝑡2

2
∗ 𝑝𝑜

′′ 𝑡 + ⋯

 + 𝑝𝑜 𝑡 − ∆𝑡 ∗ 𝑝𝑜
′ 𝑡 +

∆𝑡2

2
∗ 𝑝𝑜

′′ 𝑡 − ⋯

20

Verlet integration

Game Physics

• Solving for the current position gives us

𝑝𝑜 𝑡 + ∆𝑡 = 2𝑝𝑜 𝑡 − 𝑝𝑜 𝑡 − ∆𝑡 + ∆𝑡2𝑝𝑜
′′ 𝑡 + ⋯

• If the higher terms in 𝑂(∆𝑡4) are neglected again

we get

𝑝𝑜 𝑡 + ∆𝑡 = 2𝑝𝑜 𝑡 − 𝑝𝑜 𝑡 − ∆𝑡 + ∆𝑡2𝑝𝑜
′′ 𝑡

• Note that we do not explicitly use velocities

21

Verlet integration

Game Physics 22

Verlet integration

𝑝𝑜(𝑡)

∆𝑡 ∆𝑡

𝑝𝑜(𝑡 − ∆𝑡)

2 ∗ 𝑝𝑜(𝑡) − 𝑝𝑜(𝑡 − ∆𝑡)

𝑝𝑜(𝑡 + ∆𝑡)

∆𝑡2 ∗ 𝑎 𝑡

Game Physics

• It gives an order of error in 𝑂(∆𝑡2)

• Very stable and fast as does not need to estimate

velocities

• But we need an estimation of the first 𝑝𝑜(𝑡 − ∆𝑡)

– Usually obtained from one step of Euler’s or RK4

method

• And more difficult to manage velocity related

forces such as drag or collision

23

Verlet integration

Game Physics

• Every method so far used the current position

𝑝𝑜(𝑡) and velocity 𝑣(𝑡) to calculate the next

position and velocity

– this is referred to as explicit methods

• In implicit methods, we make use of the quantities

from the next time step!

𝑝𝑜 𝑡 + ∆𝑡 = 𝑝𝑜(𝑡) + ∆𝑡 ∗ 𝑣(𝑡 + ∆𝑡)

– this particular one is called backward Euler

– the goal is to find the position 𝑝𝑜 𝑡 + ∆𝑡 for which we

would end up at 𝑝𝑜 by running the simulation backwards

24

Implicit methods

Game Physics

• Implicit methods do not guarantee more accuracy

than explicit methods

• But at least they do not add energy to the system,

they lose some

• Since we usually want a damping of the position

anyway (e.g. to simulate drag force or kinetic

friction), it’s a lesser evil

25

Implicit methods

Game Physics 26

Backward Euler

𝑥2

𝑥1 𝑥0

Game Physics

• But how do we calculate the velocity at a position

we don’t know yet?

• If we know the forces applied we can calculate it

directly

– For example if a drag force 𝐹𝐷 = −𝑏 ∗ 𝑣 is applied
𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 − ∆𝑡 ∗ 𝑏 ∗ 𝑣(𝑡 + ∆𝑡)

– And therefore

𝑣 𝑡 + ∆𝑡 =
𝑣(𝑡)

1 + ∆𝑡 ∗ 𝑏

27

Backward Euler

Game Physics

• If we don’t know the forces in advance (that

happens continuously in a game) or if solving the

previous equation is not possible, we use a

predictor-corrector method

– one step of explicit Euler’s method

– use the predicted position to calculate 𝑣(𝑡 + ∆𝑡)

• More accurate than explicit method but twice the

amount of calculation

28

Backward Euler

Game Physics

• The semi-implicit method provides simplicity of

explicit Euler and stability of implicit Euler

• Runs an explicit Euler step for velocity and then an

implicit Euler step for position

𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 + ∆𝑡 ∗ 𝑎 𝑡 = 𝑣 𝑡 + ∆𝑡 ∗ 𝐹(𝑡)/𝑚

𝑝𝑜 𝑡 + ∆𝑡 = 𝑝𝑜(𝑡) + ∆𝑡 ∗ 𝑣 𝑡 = 𝑝𝑜(𝑡) + ∆𝑡 ∗ 𝑣(𝑡 + ∆𝑡)

29

Semi-implicit method

𝑣(𝑡)

𝑎(𝑡)

𝑣(𝑡 + ∆𝑡)

𝑡

𝑡 + ∆𝑡

Game Physics

• The position update in the second step uses the

next velocity and the implicit method

– good for position-dependent forces

– and conserves energy over time, so very stable

• Usually not as accurate as RK4 because order of

error is still 𝑂(∆𝑡) but cheaper and similar stability

• Very popular choice for game physics engine

30

Semi-implicit method

Game Physics

• Many integration methods exist, each with its own

properties and limitations

– First order methods

• Euler method, Backward Euler, Semi-implicit Euler, Exponential

Euler

– Second order methods

• Verlet integration, Velocity Verlet, Trapezoidal rule, Beeman’s

algorithm, Midpoint method, Improved Euler’s method, Heun’s

method, Newmark-beta method, Leapfrog integration

– Higher order methods

• Runge-Kutta family methods, Linear multistep method

31

Summary

Game Physics

• Dimension

– We have shown integration methods for 1D variables

– However, every dimension can be calculated separately

using vector based structures

• Rotational motion

– The integration methods work exactly the same for

angular displacement 𝜃, velocity 𝜔 and acceleration 𝛼

• Evaluation of all dimensions and variables should

be done for the same simulation time 𝑡

32

Concluding remarks

End of

Numerical Integration

 Next

Collision detection

