Game Physics

Game and Media Technology Master Program - Utrecht University

Dr. Nicolas Pronost

Numerical Integration

Updating position

- Recall that *FORCE* = *MASS* × *ACCELERATION*
 - If we assume that the mass is constant then

 $F(p_o, t) = m * a(p_o, t)$

- We know that v'(t) = a(t) and $p_o'(t) = v(t)$
- So we have $F(p_o, t) = m * p_o''(t)$
- This is a differential equation
 - Well studied branch of mathematics
 - Often difficult to solve in real-time applications

Taylor series

• Taylor expansion series of a function can be applied on p_0 at t + Δt

$$p_o(t + \Delta t)$$

$$= p_o(t) + \Delta t * p_o'(t) + \frac{\Delta t^2}{2} p_o''(t) + \cdots$$

$$+ \frac{\Delta t^n}{n!} p_o^{(n)}(t)$$

• But of course we don't know the values of the entire infinite series, at best we have $p_o(t)$ and the first two derivatives

First order approximation

• Hopefully, if Δt is small enough, we can use an approximation

$$p_o(t + \Delta t) \approx p_o(t) + \Delta t * p_o'(t)$$

• Separating out position and velocity gives

$$v(t + \Delta t) = v(t) + a(t)\Delta t = v(t) + \frac{F(t)}{m}\Delta t$$
$$p_o(t + \Delta t) = p_o(t) + v(t)\Delta t$$

Euler's method

• This is known as Euler's method $v(t + \Delta t) = v(t) + a(t)\Delta t$ $p_o(t + \Delta t) = p_o(t) + v(t)\Delta t$

Euler's method

- So by assuming the velocity is constant for the time Δt elapsed between two frames
 - We compute the acceleration of the object from the net force applied on it

a(t) = F(t)/m

- We compute the velocity from the acceleration $v(t + \Delta t) = v(t) + a(t)\Delta t$
- We compute the position from the velocity $p_o(t + \Delta t) = p_o(t) + v(t)\Delta t$

Issues with linear dynamics

- We only look at a sequence of instants without meaning
 - *E.g.* little chance that we see the precise instant of bouncing

Trajectories are treated as piecewise lines

 we assume constant velocity and acceleration in-between frames

Time step

- The smaller Δt , the closer to $p_o(s) = \int_0^s v(t) dt$ the approximation, and so the more we can ignore these issues
- So the classic solution is to reduce Δt as much as possible
 - Usually frame rate of the game loop is enough
 - But sometimes more steps are needed (especially if frame rate drops)
 - we perform more than one integration step per frame
 - each step is called an iteration
 - if *h* is the length of the frame and *n* the number of iterations, then $\Delta t = h/n$ for each iteration of a step

Time step

- However, our assumption is that the slope at a current point is a good estimate for the slope over the entire time interval Δt
- If not, the approximation can drift off the function, and the farther it drifts the worse the tangent approximation can get

Error accumulation

 Accuracy is increased by taking the smallest step as possible, however more rounding errors occur and it is computationally expensive

Midpoint method

• In the midpoint method we calculate the tangent in the middle of the interval

- using Euler's method on half of the desired time step

• And apply it to our point across the entire interval

Midpoint method

• The position of the point is given by

$$p_o(t + \Delta t) = p_o(t) + \Delta t * v \left(t + \frac{\Delta t}{2}, p_o + \frac{\Delta t}{2} v(t, p_o) \right)$$

- The order of the error is dependent on the square of the time step $O(\Delta t^2)$ which is better than Euler's method $(O(\Delta t))$ when $\Delta t < 1$
- Approximate the function with a quadratic curve instead of a line
- But still can drift off the function

Improved Euler's method

- The improved Euler's method considers the tangent lines to the solution curve at both ends of the interval
- It takes the average of two points, one overestimating the ideal velocity and one underestimating it
 - defined by the up/down concavity of the curve (not known in advance)
 - reduces Euler's method error as 'move back' the point towards the curve
- The order of the error is again $O(\Delta t^2)$ as the measure of the final derivative is still inaccurate

Improved Euler's method

- Velocity to the first point (Euler's prediction) $v_1 = v(t) + \Delta t * a(t, v)$
- Velocity to the second point (correction point) $v_2 = v(t) + \Delta t * a(t + \Delta t, v_1)$
- Improved Euler's velocity $v(t + \Delta t) = \frac{v_1 + v_2}{2}$

Improved Euler's method

Runge-Kutta method

- Hopefully there exist methods that give better results than a quadratic error
- The Runge-Kutta order four method (RK4) is for example $O(\Delta t^4)$
- It can be seen as a combination of the midpoint and modified Euler's methods where we give higher weights to the midpoint tangents than to the endpoints tangents

RK4

• We calculate the four following tangents

$$v_1 = \Delta t * a(t, v(t))$$

$$v_2 = \Delta t * a\left(t + \frac{\Delta t}{2}, v(t) + \frac{1}{2}v_1\right)$$

$$v_3 = \Delta t * a\left(t + \frac{\Delta t}{2}, v(t) + \frac{1}{2}v_2\right)$$

$$v_4 = \Delta t * a(t + \Delta t, v(t) + v_3)$$

• And weight them as follows $v(t + \Delta t) = v(t) + \frac{v_1 + 2v_2 + 2v_3 + v_4}{6}$

RK4

 The Verlet integration method is based on the sum of the Taylor expansion series of the previous time step and the next one

$$p_{o}(t + \Delta t) + p_{o}(t - \Delta t)$$

= $p_{o}(t) + \Delta t * p_{o}'(t) + \frac{\Delta t^{2}}{2} * p_{o}''(t) + \cdots$
+ $p_{o}(t) - \Delta t * p_{o}'(t) + \frac{\Delta t^{2}}{2} * p_{o}''(t) - \cdots$

• Solving for the current position gives us

 $p_o(t + \Delta t) = 2p_o(t) - p_o(t - \Delta t) + \Delta t^2 p_o''(t) + \cdots$

 If the higher terms in O(Δt⁴) are neglected again we get

$$p_o(t + \Delta t) = 2p_o(t) - p_o(t - \Delta t) + \Delta t^2 p_o''(t)$$

Note that we do not explicitly use velocities

- It gives an order of error in $O(\Delta t^2)$
- Very stable and fast as does not need to estimate velocities
- But we need an estimation of the first $p_o(t \Delta t)$
 - Usually obtained from one step of Euler's or RK4 method
- And more difficult to manage velocity related forces such as drag or collision

Implicit methods

 Every method so far used the current position *p_o(t)* and velocity *v(t)* to calculate the next position and velocity

- this is referred to as explicit methods

• In implicit methods, we make use of the quantities from the next time step!

$$p_o(t + \Delta t) = p_o(t) + \Delta t * v(t + \Delta t)$$

- this particular one is called backward Euler

- the goal is to find the position $p_o(t + \Delta t)$ for which we would end up at p_o by running the simulation backwards

Implicit methods

- Implicit methods do not guarantee more accuracy than explicit methods
- But at least they do not add energy to the system, they lose some
- Since we usually want a damping of the position anyway (*e.g.* to simulate drag force or kinetic friction), it's a lesser evil

Backward Euler

Backward Euler

- But how do we calculate the velocity at a position we don't know yet?
- If we know the forces applied we can calculate it directly
 - For example if a drag force $F_D = -b * v$ is applied $v(t + \Delta t) = v(t) - \Delta t * b * v(t + \Delta t)$
 - And therefore

$$v(t + \Delta t) = \frac{v(t)}{1 + \Delta t * b}$$

Backward Euler

 If we don't know the forces in advance (that happens continuously in a game) or if solving the previous equation is not possible, we use a predictor-corrector method

one step of explicit Euler's method

- use the predicted position to calculate $v(t + \Delta t)$
- More accurate than explicit method but twice the amount of calculation

Semi-implicit method

- The semi-implicit method provides simplicity of explicit Euler and stability of implicit Euler
- Runs an explicit Euler step for velocity and then an implicit Euler step for position

$$v(t + \Delta t) = v(t) + \Delta t * a(t) = v(t) + \Delta t * F(t)/m$$

 $p_o(t + \Delta t) = p_o(t) + \Delta t * v(t) = p_o(t) + \Delta t * v(t + \Delta t)$

Semi-implicit method

- The position update in the second step uses the next velocity and the implicit method
 - good for position-dependent forces
 - and conserves energy over time, so very stable
- Usually not as accurate as RK4 because order of error is still $O(\Delta t)$ but cheaper and similar stability
- Very popular choice for game physics engine

Summary

- Many integration methods exist, each with its own properties and limitations
 - First order methods
 - Euler method, Backward Euler, Semi-implicit Euler, Exponential Euler
 - Second order methods
 - Verlet integration, Velocity Verlet, Trapezoidal rule, Beeman's algorithm, Midpoint method, Improved Euler's method, Heun's method, Newmark-beta method, Leapfrog integration
 - Higher order methods
 - Runge-Kutta family methods, Linear multistep method

Concluding remarks

Dimension

- We have shown integration methods for 1D variables
- However, every dimension can be calculated separately using vector based structures
- Rotational motion
 - The integration methods work exactly the same for angular displacement θ , velocity ω and acceleration α
- Evaluation of all dimensions and variables should be done for the same simulation time *t*

End of Numerical Integration

Next Collision detection